

Use DevOps to

Minimize Application

Security Risks

2

Open Source Code Is Everywhere
Widespread open source usage is simply a fact in organizations of every size, across all

verticals. This is not a passing trend – open source usage will continue to grow. Developers

are going to keep incorporating open source components into their code: it ’s cost-effective, it

helps companies accelerate the software development lifecycle (SLDC) and it frees up

developers’ time to give their organization’s proprietary code the extra magic they need to

stand out in today’s marketplace.

A recent survey of Github found that virtually all (94%) of those who are employed use open

source at least sometimes in their professional work (81% use it frequently), and 65% of those

who contribute back do so as part of their work duties. According to the GitHub survey, most

developers report that their employers accept or encourage use of open source applications

(82%) and dependencies in their code base (84%), but some said their employers’ policies on

use of open source are unclear (applications: 13%, dependencies: 11%). 72% say that they always

seek out open source options when evaluating new tools.

Reading this survey’s findings, one cannot ignore the fact that open source software usage is

growing day-after-day. But, unfortunately, many of these open source components come with

liabilities in their license agreements, and one out of every 16 open source download requests

is for a component with a known vulnerability.

Furthermore, looking at the heterogeneous sources of applications code, one can categorize

today’s applications into three main types, each with its own associated risk level:

1) The modern application – comprising of mostly open source code.

2) The legacy application – comprising a close to 0 amount of open source components.

3) The composite application – comprising of various types of source code components:

proprietary, 3rd party and open source components.

http://opensourcesurvey.org/2017/

3

Types of Applications

Source: Forrester, WhiteSource and Microsoft webinar, Shift Left your Application Security. Minimize Open Source Risks

90% Open Source

Components

10% Proprietary

Code

Modern

languages e.g.

Java, Ruby, Go,

etc.

Mobile apps, web

apps, IoT

connected

devices apps,

APIs

MODERN APP

10% Open Source

Components

90% Proprietary

Code

Mix of languages

e.g. Java, C, C++,

Fortran, Cobol

Web apps, APIs

LEGACY APP

70% Third Party

30% Proprietary

Code

Mix of languages

e.g. Java, C, C++,

Fortran, Cobol

Mix of binaries

Web apps, APIs,

mobile apps, IoT

connected

devices apps,

APIs

COMPOSITE APP

https://www.whitesourcesoftware.com/whitesource-webinars/use-devops-shift-left-application-security/

4

Old method: No coordinated effort, oftentimes too little too late in the life cycle

New method: Continuous Application Security Testing Security visibility across development life

cycle to decrease discovery and remediation time

Source: Forrester, WhiteSource and Microsoft webinar, Shift Left your Application Security. Minimize Open Source Risks

Agility and modern service delivery are indeed a target and a reality already at many

organizations. However, a recent MSDN blog post about open source management raises the

following questions:

• Can we trust all the open source libraries that are in use?

• Do the open source libraries align with our organization’s security standards?

• Do we accept all types of open source licenses?

• Can we track the OSS components that are added to our systems?

The Goal is Continuous Delivery and

Continuous Security
The advantages of using open source components are obvious, and organizations are using

more and more of them – either in the development of their products or in the internal tools that

they use. As this practice continues to grow, it’s important to pause for one moment and take a

closer look at the processes and tools that we use when we work.

https://www.whitesourcesoftware.com/whitesource-webinars/use-devops-shift-left-application-security/
https://blogs.msdn.microsoft.com/visualstudioalmrangers/2017/01/17/manage-your-open-source-usage-and-security-in-your-pipeline/

5

Use DevOps to Minimize Application

Security Risks
DevOps approach applies agile and lean thinking principles to all stakeholders in an

organization who develop, operate, or benefit from the business’s software systems, including

customers, suppliers and partners.

DevOps Cycle

By extending lean principles across the entire software supply chain, DevOps capabilities will

improve productivity through accelerated customer feedback cycles, unified measurements

and collaboration across an enterprise, and reduced overhead, duplication, and rework.

Devops also offers competitive advantages to a business through three dynamic capabilities:

1) Decreasing total cost of production by tracing issues as soon as possible, during the

development lifecycle (SDLC).

2) Speeding continuous innovation of ideas by enabling collaborative development and

testing across the value chain.

3) Enabling continuous delivery of these innovations by automating software delivery

processes and eliminating waste while still helping to meet regulatory concerns

6

Automate Your DevOps Cycle
DevOps is a rather new term emerging from the collision of two major related trends. The first

was also called “agile system administration” or “agile operations”; it sprang from

applying newer Agile and Lean approaches to operations work. The second is a much-

expanded understanding of the value of collaboration between development and operations

staff throughout all stages of the development lifecycle when creating and operating a

service, and how important operations has become in our increasingly service-oriented world.

Going back to open source: if open source is everywhere, it must be managed like any other

type of code. So many Application Life-Cycle Management (ALM) systems are handling

proprietary and commercial code. So many discussions on methodologies of how to manage

code and development processes. But not enough recognition, acceptance and

methodology around open source management.

Applying the DevOps cycle to open source management requires the adaption of each of

the steps specifically to open source characteristics. This requires a certain expertise - but it’s

certainly doable.

Plan a Secure and Cost-Effective

Application
Agile development requires the product manager and the R&D manager to sync, sprint after

sprint, on the user stories that will increase application security, regardless of the type of code

that is being used, proprietary or open source.

Here is a list of example security focused stories that DevOps people should push to see as

part of the Agile sprints:

• As a DevOps expert, I would like to automatically detect all open source components

in the code, while running a build.

• As a DevOps expert, I would like to get real-time alerts on security risks, policy pitfalls,

and software bugs.

7

• As a developer, I would like to discover the best open source components for my

needs, while I search online.

• As a CISO, I would like to make sure that developers are downloading only authorized

open source components.

• As a CISO, I would like to generate comprehensive, always up to date reports on my

open source usage, in one click.

Code Only with Secure and

Authorized Open Source

Components
Developers want to code. They don’t care much about costs, processes or policies. They want

to use good, innovative and easy-to-deploy code. As a development manager or CISO, you

are most likely worried about the code components that your developers are deploying.

Not only would you want to know what they are using, at best, you would like to control the

open source components that developers are downloading, limiting them to secure, up-to-

date and approved ones.

Such early detection of development issues, shifted left to the component-selection phase,

will optimize your DevOps cycle, decrease cost and last but not least, ensure that the released

product is the best possible one, security, quality and organizational-policy wise.

8

Shift Left Security Checkups to the

Build Phase

As a development manager, you want to make sure that your software goes through build

cycles smoothly as possible. You are also most concerned about the percentage of

propitiatory code bugs and open source vulnerabilities that can jeopardize the product’s

quality or in worst cases- invite cyber-attacks.

As a development manager, you want that every time a new component is added to the

build, your pre-integrated open source management tool will automatically calculate and

assign a digital signature to that component, cross-reference it against an up-to-date

database of known vulnerabilities to determine if it’s an open source component and alert

you on any known issues that are associated with that component.

As a DevOps expert and as a development manager, you want to know how healthy your

build is and you want to address issues as soon as possible. Preferably the day after the build

and certainly not in a periodic manner, when the product is already being used by thousands

of users out there…

WhiteSource Platform: Vulnerabilities Dashboard

Remediating open source security risks should be an easy to handle task when the

development manager can easily see the list of vulnerabilities, by priority, directing the

responsible developer to handle these vulnerabilities one after the other and leveraging an

easy-to-reach ‘fix’ link to the recommended remediation.

9

WhiteSource Platform: Security Vulnerabilities

Continuous Monitoring is the Heart

of it All
When it comes to open source management, the responsible program manager would want

to be on top of all known assets and all known vulnerabilities. That person needs an easy

way to download a full and accurate open source Bill of Materials (BoM) report based on the

last build.

The responsible development manager may also be asked by the CISO or by the legal

parties at the company to address any license and compliance risks. An easy to produce

‘License Distribution’ type of report is therefore a critical type of requirement.

WhiteSource Platform: License and Compliance Risks

10

Bringing it all Together
Agile development is a continuous process. Sprint after sprint all people involved, from

senior to junior, from CISO to product managers, from dev managers to test managers, from

IT Ops to program managers; are all devoted to getting the best product out there,

functionality, security and quality wise.

An optimized DevOps cycle is a key success factor in detecting issues and handling them as

soon as possible, and as part of the development cycle and not after release or deployment.

When open source code is widely spread, an open source management product -

continuous and pre-integrated into your DevOps cycle, is a critical enabler that DevOps

teams should insist on implementing.

